

Cambridge Assessment International Education

Cambridge Secondary 1 Checkpoint

CANDIDATE NAME					
CENTRE NUMBER		CANDIDAT NUMBER	E		

SCIENCE 1113/01

Paper 1 April 2019

45 minutes

Candidates answer on the Question Paper.

Additional Materials: Pen Calculator

Pencil Ruler

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You should show all your working in the booklet.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

1 The list contains the names of different parts of a cell.

cell membrane
cell wall
cytoplasm
nucleus
chloroplast

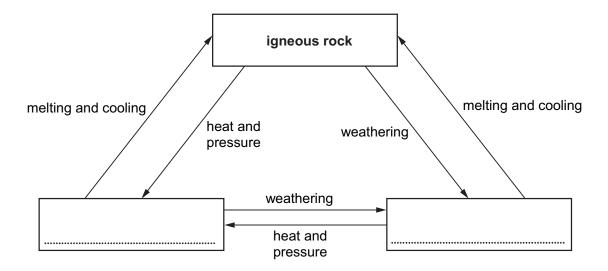
(a) The table shows where different parts of a cell are found.

Complete the table by placing ticks (\checkmark) in the correct boxes.

One has been done for you.

	where the part of the cell is found				
part of a cell	only in animal cells	only in plant cells	in both animal and plant cells		
cell membrane					
cell wall		✓			
cytoplasm					
nucleus					
chloroplast					

(b)	Which part of a cell contains the genetic material?	
		 [1]


[3]

2 There are stars, planets and other objects in space.

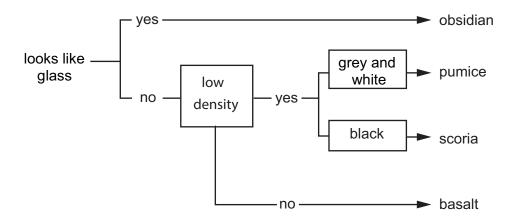
name	type of object	
Mars	planet	
Moon	natural satellite	
Polaris	star	
Sirius	star	

(a)	Use the table to write down the names of two light sources in space.	
	1	
(b)	Humans can see Mars from Earth.	[1
	(i) Describe why we can see Mars in the night sky.	
		[1
	(ii) Describe why we cannot see details on the surface of Mars.	[1
(c)	Humans can see the star Polaris from Earth.	
(0)	It appears to move during different times of the year.	
	Explain why Polaris appears to move.	
		 [1

3 The diagram shows part of the rock cycle.

(a) Complete the diagram by writing in the **two** missing types of rock.

[2]

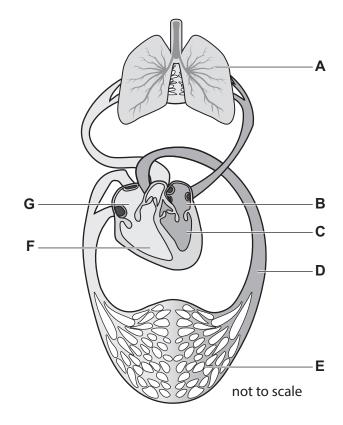

(b) Pierre investigates rocks.

He describes the rocks he investigates.

Here is a table of his observations.

rock	observation	
Α	A grey and white rock that has a low density	
B black rock that has a high density		
С	shiny black rock that looks like glass	
D	black rock that has a low density	

Use this key to identify the four rocks.



Α	
В	
С	
D	

[2]

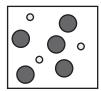
4 The diagram shows the human circulatory system.

Parts of the system are labelled with the letters **A** to **G**.

Use the diagram to identify parts of the circulatory system from their descriptions.

Write your answers in the table.

description		
the part that pumps blood to the lungs		
the part where oxygen leaves the blood		
the part where the blood is at its greatest pressure		
an artery that takes blood to the body		


[4]

5 The diagrams show the particles in different substances.

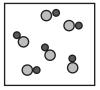
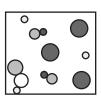

Draw a line to match each **diagram** with the **description** of that diagram.

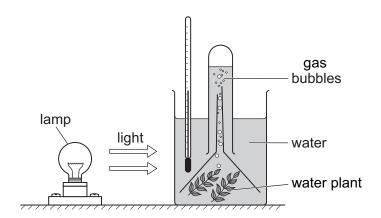
diagram description


mixture of compounds

mixture of elements

mixture of elements and compounds

single compound


single element

[3]

6 Safia and Jamila investigate photosynthesis.

They use water plants.

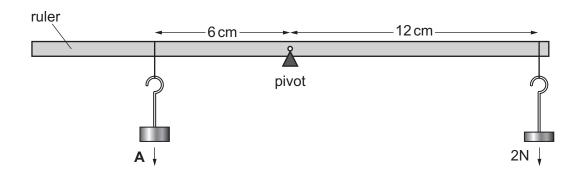
Here is the apparatus they use.

- (a) In their first experiment they measure the number of gas bubbles made in one minute.
 - (i) What is the name of the gas made in photosynthesis?

Circle the correct answer.

	carbon dioxide	methane	nitrogen	oxygen	water	[1]
(ii)	What equipment do	es Safia use to	measure one	minute?		
						[1]

(b) Safia and Jamila do two more experiments.


They move the lamp further away from the plant for each experiment.

Here are their results.

distance between light and water plant in cm	number of gas bubbles in one minute
10	98
20	54
40	26

		decreases	[1]
	The	rate of photosynthesis does not change as light decreases.	
		increases	
(d)	Circle	e the correct word or phrase that completes the conclusion.	[1]
	a dis	tance of 50 cm = gas bubbles	[4]
	a dist	tance of 30 cm = gas bubbles	
(c)	Pred	lict the results for:	
			[1]
		As the distance between the light and the water plant increases,	
	(ii)	Complete the sentence describing the pattern of results.	
			[1]
	(1)	Why do they use one minute for each experiment?	

7 Lily balances a ruler on a pivot.

Calculate the size of the force **A**.

force A	N	l .	[2]

8

Ang	ngelique and Mike decide to make copper chloride.						
(a)	They mix copper carbonate with an acid.						
	Writ	e the name	of the acid they u	use.			
	••••						[1]
(b)	The	sentences A	A – E describe th	ne method they u	se.		
	The	sentences a	are in the wrong	order.			
	A	The solution	on (filtrate) is left	for the crystals to	grow.		
	В	The solution	on (filtrate) is put	into an evaporat	ing dish.		
	С	The solution	on (filtrate) is hea	ted until the first	crystals appear.		
	D	Excess cop	oper carbonate is	s added to the ac	id until there is n	o more fizzing.	
	E	The excess	s copper carbona	ate is removed by	y filtering.		
	0						
	Con	npiete the bo	oxes to show the	correct order.			
	One	box has be	en done for you.				
		D					[2]
			ı	ı	ı		[-]

- 9 Class 7 investigate air resistance.
 - They run from one end of the playground to the other end of the playground.
 - They measure the time to complete the run.
 - They repeat the run with umbrellas.

(a) Class 7 write down their results.

no umbrella = 10 seconds

with umbrella = 14 seconds

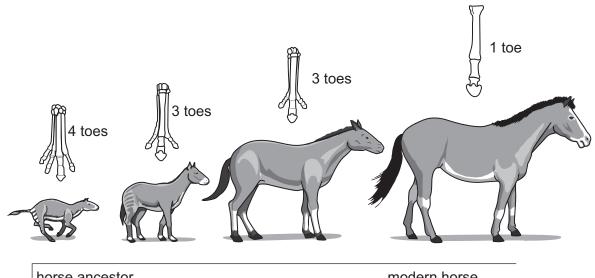
no umbrella = 8 seconds

with umbrella = 9 seconds

no umbrella = 7 seconds

with umbrella = 13 seconds

no umbrella = 11 seconds


with umbrella = 15 seconds

(i) Write their results in the table.

time with no umbrella in seconds	time with umbrella in seconds

					•	[1]
	(ii)	Calculate the mea	an (average) times.			
		mean time with no	o umbrella =	S		
		mean time with ur	mbrella =	S		[1]
(b)	Wri	te down a conclusi	on for this investigation	on about air resistar	nce.	
	•••••			•••••		[2]

10 The diagrams show the modern horse and three of its ancestors.

horse ancestor modern hor			modern horse
55	40	17	4 million years ago

(a)	Wh hor	at evidence has been used to find out the appearance of the ancestors of the modern se?	
			[1]
(b)	The	e appearance of the horse has changed over the last 55 million years.	
	(i)	Use the diagrams to describe two ways the appearance of the horse has changed.	
		1	
		2	[2]
			[2]
	(ii)	A scientist developed the theory of natural selection to explain this gradual change in appearance.	
		What is the name of this scientist?	
			[1]

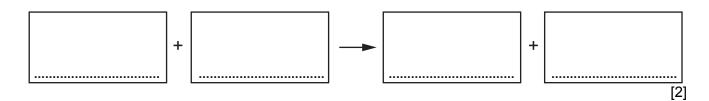
11 Pierre investigates a type of reaction.

He reacts different metals with different salt solutions.

Here are his results.

metal	salt solution	observation	
copper	tin nitrate	no reaction	
iron	tin nitrate	reaction	
tin	iron sulfate	no reaction	
magnesium	zinc sulfate	reaction	
zinc	iron sulfate	reaction	

(a) Put the metals in order of reactivit	(a) Put the	metals	in order	of rea	activit
--	----	-----------	--------	----------	--------	---------


One has been done for you.

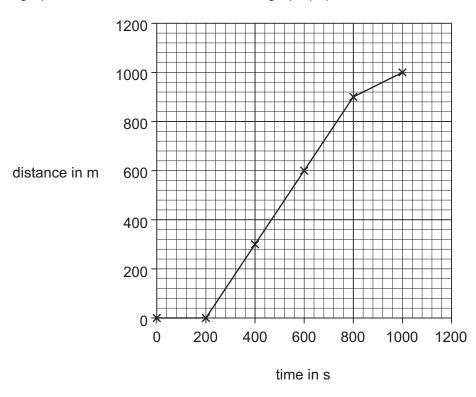
	most reactive		
		iron	
	least reactive		[1]
(b)	What type of re	action does Pierre investigate?	
			[1]

(c) Magnesium reacts with zinc sulfate solution.

This reaction has two products.

Write the word equation for this reaction.

12 Oliver and Chen walk to school.


Here is information about their walk to school.

time in s	Oliver's distance in m	Chen's distance in m
0	0	0
200	200	0
400	400	300
600	600	600
800	800	900
1000	1000	1000

(a) They plot a distance-time graph.

Chen's graph has been done for you.

Plot the graph for Oliver's results on the same graph paper.

(b) The school is 1000 m from where Oliver and Chen started walking.

Who walked to school in the **shorter** time?

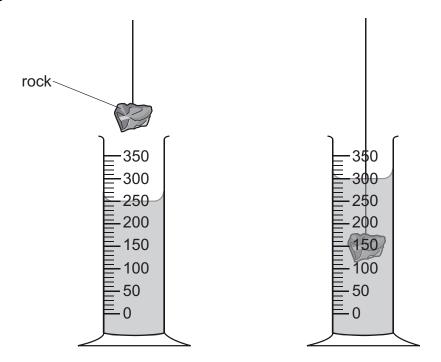
Circle the correct answer.

cannot tell from the information

Chen

Oliver

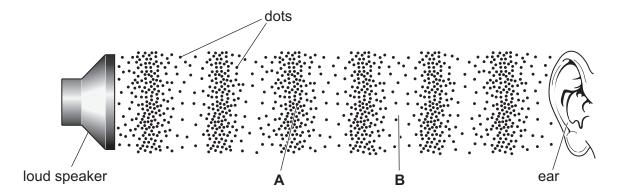
they never reached the school


they took the same time

Exp	lain	your	answer.
-----	------	------	---------

[1]

13 Measuring cylinders are used to measure volume.


Look at the diagram.

What is the volume of the piece of rock?

_____ cm³ [1]

14 The properties of sound can be explained using a diagram.

Complete the sentences.

The first sentence has been done for you.

Choose words from

air	close	together	compression	density	far apart
	mass	pressure	rarefaction	solid	sound

The dots on the diagram are air particles.
In area A the dots are
This area is called a
In area B the dots are
This area is called a

[4]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.